243^2x=1/81

Simple and best practice solution for 243^2x=1/81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 243^2x=1/81 equation:



243^2x=1/81
We move all terms to the left:
243^2x-(1/81)=0
We add all the numbers together, and all the variables
243^2x-(+1/81)=0
We get rid of parentheses
243^2x-1/81=0
We multiply all the terms by the denominator
243^2x*81-1=0
Wy multiply elements
19683x^2-1=0
a = 19683; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·19683·(-1)
Δ = 78732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{78732}=\sqrt{26244*3}=\sqrt{26244}*\sqrt{3}=162\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-162\sqrt{3}}{2*19683}=\frac{0-162\sqrt{3}}{39366} =-\frac{162\sqrt{3}}{39366} =-\frac{\sqrt{3}}{243} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+162\sqrt{3}}{2*19683}=\frac{0+162\sqrt{3}}{39366} =\frac{162\sqrt{3}}{39366} =\frac{\sqrt{3}}{243} $

See similar equations:

| |4x–2|=–6 | | 2x-2+14x=6(6x-2)+6 | | 9x-2=3x+34 | | 5,x-7=x+29 | | x=12-35/x | | 5(x-4)=10x-5 | | 6=5+n/4 | | x×2/3=360 | | -8=-10+k/10 | | 3=k/2+8 | | 10=2+r/2 | | 6000=-(24000)(x) | | 4=v/6 | | 520=-(212000)(x) | | 520=-(2.21000)(x) | | 15=r/19 | | -60+9x=39 | | 47=17+3x | | 5x-15x=10 | | 133=9x+25 | | 3x+x/4=9 | | 3(5^x)=15^x | | 7-4(x+20)+3=305 | | 4+5-8x-7x=x | | 7-4(x+20)=305 | | 7-3(x-20)=305 | | 21x+-3x=28 | | 21x+-3x=2 | | 7-3(x-20)-4=305 | | 5x^2+24x-240=0 | | 5+x=5x-11 | | 4x-1/x+1=x-1 |

Equations solver categories